plates inoculated with mycelia without plant tissue to verify that the medium and incubation conditions do not interfere with fungal growth. As a positive control, add paper disks impregnated with a known fungicide to Petri plates inoculated with the mycelium.

Incubate the plates for a set number of days to allow fungal growth and spreading of the mycelium over the surface of the plate. Record the diameter of the zone of clearing, if any, around the tissue samples and the fungicide control disk.

Record your observations in the following table.

Results of Antifungal Testing of Vascular Tissue from Different Species of Elm

| Disk                           | Zone of Inhibition (mm) |
|--------------------------------|-------------------------|
| Distilled Water                |                         |
| Fungicide                      |                         |
| Tissue from Susceptible Elm #1 |                         |
| Tissue from Susceptible Elm #2 |                         |
| Tissue from Resistant Elm #1   |                         |
| Tissue from Resistant Elm #2   |                         |

## **Table 24.1**

Analyze the data and report the results. Compare the effect of distilled water to the fungicide. These are negative and positive controls that validate the experimental setup. The fungicide should be surrounded by a clear zone where the fungus growth was inhibited. Is there a difference among different species of elm?

**Draw a conclusion**: Was there antifungal activity as expected from the fungicide? Did the results support the hypothesis? If not, how can this be explained? There are several possible explanations.

## 24.5 Importance of Fungi in Human Life

By the end of this section, you will be able to do the following:

- Describe the importance of fungi to the balance of the environment
- Summarize the role of fungi in agriculture and food and beverage preparation
- Describe the importance of fungi in the chemical and pharmaceutical industries
- Discuss the role of fungi as model organisms

Although we often think of fungi as organisms that cause disease and rot food, they are vitally important to human life on many levels. As we have seen, fungi influence the well-being of human populations on a large scale because they are part of the nutrient cycle in ecosystems. They have other ecosystem roles as well. As animal pathogens, fungi help to control the population of damaging pests. These fungi are very specific to the insects they attack, and do not infect other animals or plants. Fungi are currently under investigation as potential microbial insecticides, with several already on the market. For example, the fungus *Beauveria bassiana* is being tested as a possible biological control agent for the recent spread of emerald ash borer a beetle that feeds on ash trees. It has been released in Michigan, Illinois, Indiana, Ohio, West Virginia, and Maryland (Figure 24.28).



Figure 24.28 Fungal insect control. The emerald ash borer (*Agrilus planipennis*) is an insect that attacks ash trees. It is in turn parasitized by a pathogenic fungus (*Beauveria bassiana*) that holds promise as a biological insecticide. The parasitic fungus appears as white fuzz on the body of the insect. (credit: Houping Liu, USDA Agricultural Research Service)

The mycorrhizal relationship between fungi and plant roots is essential for the productivity of farm land. Without the fungal partner in root systems, 80–90 percent of trees and grasses would not survive. Mycorrhizal fungal inoculants are available as soil amendments from gardening supply stores and are promoted by supporters of organic agriculture.

We also eat some types of fungi. Mushrooms figure prominently in the human diet. Morels, shiitake mushrooms, chanterelles, and truffles are considered delicacies (Figure 24.29). The humble meadow mushroom, *Agaricus campestris*, appears in many dishes. Molds of the genus *Penicillium* ripen many cheeses. They originate in the natural environment such as the caves of Roquefort, France, where wheels of sheep milk cheese are stacked in order to capture the molds responsible for the blue veins and pungent taste of the cheese.





Figure 24.29 Edible fungi. The morel mushroom (a) is an ascomycete greatly appreciated for its delicate taste. (credit: Jason Hollinger). Basidiocarps of *Agaricus* ready for an omelet (credit: Mary Anne Clark)

Fermentation—of grains to produce beer, and of fruits to produce wine—is an ancient art that humans in most cultures have practiced for millennia. Wild yeasts are acquired from the environment and used to ferment sugars into  $CO_2$  and ethyl alcohol under anaerobic conditions. It is now possible to purchase isolated strains of wild yeasts from different wine-making regions.

Louis Pasteur was instrumental in developing a reliable strain of brewer's yeast, *Saccharomyces cerevisiae*, for the French brewing industry in the late 1850s. This was one of the first examples of biotechnology patenting.

Many secondary metabolites of fungi are of great commercial importance. Antibiotics are naturally produced by fungi to kill or inhibit the growth of bacteria, limiting their competition in the natural environment. Important antibiotics, such as penicillin and the cephalosporins, are isolated from fungi. Valuable drugs isolated from fungi include the immunosuppressant drug *cyclosporine* (which reduces the risk of rejection after organ transplant), the precursors of steroid hormones, and ergot alkaloids used to stop bleeding. Psilocybin is a compound found in fungi such as *Psilocybe semilanceata* and *Gymnopilus junonius*, which have been used for their hallucinogenic properties by various cultures for thousands of years.

As simple eukaryotic organisms, fungi are important model research organisms. Many advances in modern genetics were achieved by the use of the red bread mold *Neurospora crassa*. Additionally, many important genes originally discovered in *S. cerevisiae* served as a starting point in discovering analogous human genes. As a eukaryotic organism, the yeast cell produces and modifies proteins in a manner similar to human cells, as opposed to the bacterium *Escherichia coli*, which lacks the internal membrane structures and enzymes to tag proteins for export. This makes yeast a much better organism for use in recombinant DNA technology experiments. Like bacteria, yeasts grow easily in culture, have a short generation time, and are amenable to genetic modification.